Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Toxics ; 11(2)2023 Jan 17.
Article in English | MEDLINE | ID: covidwho-2253695

ABSTRACT

Wearing masks has become the norm during the Coronavirus disease pandemic. Masks can reportedly interface with air pollutants and release microplastics and plastic additives such as phthalates. In this study, an experimental device was set up to simulate the impact of five kinds of masks (activated-carbon, N95, surgical, cotton, and fashion masks) on the risk of humans inhaling microplastics and phthalates during wearing. The residual concentrations of seven major phthalates ranged from 296 to 72,049 ng/g (median: 1242 ng/g), with the lowest and the highest concentrations detected in surgical (median: 367 ng/g) and fashion masks (median: 37,386 ng/g), respectively. During the whole inhalation simulation process, fragmented and 20-100 µm microplastics accounted for the largest, with a rapid release during the first six hours. After one day's wearing, that of 6 h, while wearing different masks, 25-135 and 65-298 microplastics were inhaled indoors and outdoors, respectively. The total estimated daily intake of phthalates with indoor and outdoor conditions by inhalation and skin exposure ranged from 1.2 to 13 and 0.43 to 14 ng/kg bw/d, respectively. Overall, surgical masks yield a protective effect, while cotton and fashion masks increase human exposure to microplastics and phthalates both indoors and outdoors compared to no mask wearing. This study observed possible risks from common facemasks and provided suggestions to consumers for selecting suitable masks to reduce exposure risks from microplastics and phthalate acid.

2.
Environ Int ; 165: 107299, 2022 07.
Article in English | MEDLINE | ID: covidwho-1851026

ABSTRACT

Melamine (MEL) and its derivatives are increasingly applied as nitrogenous flame retardants in consumer products. Nevertheless, limited information is available on their environmental occurrence and subsequent human exposure via multiple exposure pathways. In this study, we analysed MEL and its derivatives in dust (indication of the dust ingestion route) and hand wipe samples (indication of the hand-to-mouth route) collected in various microenvironments. The levels of ∑MELs in both dust (median: 24,100 ng/g) and participant hand samples (803 ng/m2) collected in e-waste dismantling workshops were significantly higher than those in samples collected in homes (15,600 ng/g and 196 ng/m2, respectively), dormitories (13,100 ng/g and 227 ng/m2, respectively) and hotel rooms (11,800 ng/g and 154 ng/m2, respectively). Generally, MEL dominated in dust samples collected in e-waste dismantling workshops, whereas cyanuric acid dominated in hand wipe samples. This may occur partly because the latter is an ingredient in disinfection products, which are more frequently employed in daily lives during the COVID-19 pandemic. Exposure assessment suggests that dust ingestion is an important exposure pathway among dismantling workers and the general population, whereas hand-to-mouth contact could not be overlooked in certain populations, such as children and dismantling workers not wear gloves at work.


Subject(s)
COVID-19 , Electronic Waste , Child , Dust/analysis , Eating , Electronic Waste/analysis , Humans , Mouth , Pandemics , Triazines
3.
Journal of Hazardous Materials ; 401:123361-123361, 2020.
Article in English | MEDLINE | ID: covidwho-662221

ABSTRACT

Contaminated sites from pesticide industry have attracted global concern due to the characteristics of organic pollution with high concentrations and complete loss of habitat conditions. Remediation of organophosphorus pesticide polluted soil using microwave-activated persulfate (MW/PS) oxidation was investigated in this study, with parathion as the representative pesticide. Approximately 90 % of parathion was degraded after 90 min of MW/PS oxidation treatment, which was superior to those by single PS or MW treatment. Relatively greater performances for parathion degradation were obtained in a relatively larger PS dosage, higher microwave temperature, and lower organic matter content. Appropriate soil moisture favored parathion degradation in soil. SO4-, OH, O2-, and 1O2 generated in the MW/PS system all contributed to parathion degradation. Multiple spectroscopy analyses indicated that PO and PS bonds in parathion were destroyed after MW/PS oxidation, accompanied by generation of hydroxylated and carbonylated byproducts. The soil safety after parathion degradation was assessed via model prediction. Furthermore, MW/PS oxidation also exhibited great performance for degradation of other organophosphorus pesticides, including ethion, phorate, and terbufos.

SELECTION OF CITATIONS
SEARCH DETAIL